Apinthanapong, M.a, Phensaijai, M.b
Biosorption of copper by spent yeast immobilized in sodium alginate beads

a Department of Food Science and Technology, School of Science, University of the Thai Chamber of Commerce, Bangkok 10400, Thailand
b Department of Applied Science, Faculty of Science, King Mongkut Institute of Technology Ladkrabang, Bangkok 10520, Thailand

Abstract
Spent yeast from the brewing industry was immobilized with sodium alginate and used in a study on biosorption of Cu(II). Kinetic models were developed using pseudo-first and second order equations and tested for the sorption of Cu(II). The results showed that the sorption of Cu(II) onto immobilized spent yeast in sodium alginate beads could be described by a pseudo-second order model, which had high correlation coefficients (r^2). The rate constant (k2) and the initial sorption rate (h) were calculated. The values of the rate constants were found to decrease from 0.208 to 0.037 g/mg min with an increase in the initial concentration of Cu(II) from 20 to 80 ppm. The initial sorption rate increased from 0.014 to 0.037 mg/g min as the initial concentration of Cu(II) was varied from 20 to 80 ppm. The observed dependence of the sorption rate on the initial concentration of Cu(II) indicated that the removal of Cu(II) was more rapid when the initial concentration of the solution was high.

Author Keywords
Biosorption; Copper; Sodium alginate; Spent yeast

References
- Araújo, M.M., Teixeira, J.A.
 Trivalent chromium sorption on alginate beads

- Brady, D., Duncan, J.R.
 Bioaccumulation of metal cations by Saccharomyces cerevisiae

- de Rome, L., Gadd, G.M.
 Use of pelleted and immobilized yeast and fungal biomass for heavy and radionucleotide recovery

- Donmez, G., Aksu, Z.
 The effect of copper(II) ions on the growth and bioaccumulation properties of some yeasts

- Ho, Y.S., McKay, G.
 A two-stage batch sorption optimized design for dye removal to minimum contact time

- Ho, Y.S., McKay, G.
 Pseudo-second order model for sorption processes

- Ho, Y.S., McKay, G., Wase, D.A.J., Forster, C.F.
 Study of the sorption of divalent metal ions on to peat

- Jang, L.K., Lopez, S.L., Eastman, S.L., Pryfogle, P.
 Recovery of copper and cobalt by biopolymer gels

- Kuhn, S.P., Pfister, R.M.
 Adsorption of mixed metals and calcium by calcium-alginate immobilized Zoogloea ramigera

 The use of sago waste for the sorption of lead and copper

- Sag, Y., Kutsal, T.
 Determination of the biosorption activation energies of heavy metal ions on Zoogloea ramigera and Rhizopus arrhizus

- Sarkar, D., Chattoraj, D.K.
 Activation parameters for kinetics of protein adsorption at silica-water Interface

- Strandberg, G.W., Shumate II, S.E., Parrott Jr., J.R.
 Microbial cells as biosorbents for heavy metals: Accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa

- Tsezos, M., Deutschmann, A.A.
 The use of a mathematical model for the study of the important parameters in immobilized biomass biosorption

- Tsezos, M., Keller, D.M.
 Adsorption of radium-226 by biological origin absorbents