Pleumpirom, Y., Amornsawadwatana, S.
Multiobjective optimization of aircraft maintenance in Thailand using goal programming: A decision-support model
DOI: 10.1155/2012/128346
School of Engineering, University of the Thai Chamber of Commerce, 126/1 Vibhavadee-Rangsit Rd, Dindaeng, Bangkok 10400, Thailand

Abstract
The purpose of this paper is to develop the multiobjective optimization model in order to evaluate suppliers for aircraft maintenance tasks, using goal programming. The authors have developed a two-step process. The model will firstly be used as a decision-support tool for managing demand, by using aircraft and flight schedules to evaluate and generate aircraft-maintenance requirements, including spare-part lists. Secondly, they develop a multiobjective optimization model by minimizing cost, minimizing lead time, and maximizing the quality under various constraints in the model. Finally, the model is implemented in the actual airline's case. Copyright © 2012 Yuttapong Pleumpirom and Sataporn Amornsawadwatana.

References
- Pearce, B.
The state of air transport markets and the airline industry after the great recession
- Dostaler, I., Flouris, T.
Business Strategy and Competition for the Future in the Airline Industry,
- Belobaba, P., Odoni, A., Barnhart, C.
The Global Airline Industry,
New York, NY, USA John Wiley and Sons
- Hofer, C., Dresner, M.E., Windle, R.J.
The impact of airline financial distress on US air fares: A contingency approach
2-s2.0-57149137113 10.1016/j.tre.2008.04.001
- Pels, E.
Airline network competition: Full-service airlines, low-cost airlines and long-haul markets
2-s2.0-65049087810 10.1016/j.retrec.2009.01.009
- Christopher, M.
(2005) Logistics and Supply Chain Management: Creating Value-Adding Networks,
New York, NY, USA FT Prentice Hall
- Chan, F.T.S., Qi, H.J.
An innovative performance measurement method for supply chain management
2-s2.0-3242712963 10.1108/13598540310484618
- Choy, K.L., Chow, H.K.H., Lee, W.B., Chan, F.T.S.
Development of performance measurement system in managing supplier relationship for maintenance logistics providers
2-s2.0-34249733045 10.1108/14635770710753149
• Aviation Statistics,
 Department Of Civil Aviation

• Milde, M., Kumpeera, S.
 International Air Laws,
 (2006) Logistics Principles and Applications,
 2nd New York, NY, USA McGraw-Hill

• Langford, J.W.
 2-s2.0-77954233390 10.1108/13598541011054689

• Platt, K.W., Song, N.
 Overseas sourcing decisionsthe total cost of sourcing from China
 2-s2.0-77954233390 10.1108/13598541011054689

• Beckman, S.L., Rosenfield, D.B.
 New York, NY, USA McGraw-Hill

• Kumar, S., Johnson, K.L., Lai, S.T.
 Reflective practice performance improvement possibilities within the US airline industry
 2-s2.0-70350362725 10.1108/17410400910989485

• Miroslavjevic, P., Gvozdenovic, S., Cokorilo, O.
 The turbofan aircraft minimum cost climb technique
 10.1108/00022660910967327

• Yang, S.L., Ma, Y., Xu, D.L., Yang, J.B.
 Minimizing total completion time on a single machine with a flexible maintenance activity
 2-s2.0-78049450375 10.1016/j.cor.2010.09.003

• Chandra, C., Grabis, J.
 Inventory management with variable lead-time dependent procurement cost
 2-s2.0-38649130709 10.1016/j.omega.2006.04.009

• Brandon-Jones, A., Ramsay, J., Wagner, B.
 Trading interactions: Supplier empathy, consensus and bias
 2-s2.0-77951220280 10.1108/01443571011039588

• Chen, W.J.
 Methodology and theory: Minimizing completion time with maintenance schedule in a manufacturing system
 2-s2.0-77957794678 10.1108/13552511011084535

• Kinnison, H.A.
 (2004) Aviation Maintenance Management,
 New York, NY, USA McGraw-Hill

• Yadav, D.K.
 Licensing and recognition of the aircraft maintenance engineersa comparative study
2-s2.0-77953212108 10.1016/j.jairtraman.2010.03.005

• (2012) ANNEX 6 Operation of Aircraft (Amendment 33-B),
 International Civil Aviation Organization Aeroplane Maintenance

• Wang, H., Pham, H.
 (2010) Reliability and Optimal Maintenance,
 New Jersey, NJ, USA Springer

• (2007) Reliability/Availability of Electrical & Mechanical Systems for Command, Control, Communications, Computer, Intelligence, Surveillance and Reconnaissance Facilities?,
 Department Of The Army Washington DC Department of The ARMY

• Dhillon, B.S.
 (2006) Maintainability Maintenance and Reliability for Engineers,
 Boca Raton, Fla, USA Taylor and Francis

• Smith, R., Mobley, R.K.
 (2007) Rules of Thumb for Maintenance and Reliability Engineers,
 Oxford, UK Butterworth-Heinemann

• Gulati, R., Smith, R.
 (2008) Maintenance and Reliability Best Practices,
 New York, NY, USA Industrial Press

• Samet, S., Chelbi, A., Ben Hmida, F.
 Methodology and theory: Optimal availability of failure-prone systems under imperfect maintenance actions
 2-s2.0-77957803175 10.1108/13552511011084544

• Ferguson, J., Kara, A.Q., Hoffman, K., Sherry, L.
 Estimating domestic US airline cost of delay based on European model?
 Transportation Research C,
 In press

• Su, L.H., Tsai, H.L.
 Methodology and theory: Flexible preventive maintenance planning for two parallel machines problem to minimize makespan
 2-s2.0-79952467512 10.1108/13552511011072925

• Hennequin, S., Arango, G., Rezag, N.
 Optimization of imperfect maintenance based on fuzzy logic for a single-stage single-product production system
 2-s2.0-70350136743 10.1108/13552510910997779

• Oke, A.
 A framework for analysing manufacturing flexibility
 2-s2.0-24944520503 10.1108/01443570510619482

• Soon, Q.H., Udin, Z.M.
 Supply chain management from the perspective of value chain flexibility: An exploratory study
 2-s2.0-79955686850 10.1108/17410381111126427

• Stevenson, M., Spring, M.

http://www.scopus.com/citation?origin=recordpage&sid=&src=&stateKey=OFD_661670388&eid=2-s2.0-84867017342&sort=&clickedLink=&vie...
Supply chain flexibility: An inter-firm empirical study
2-s2.0-70349176474 10.1108/01443570910986238

Kumar, P., Shankar, R., Yadav, S.S.
Flexibility in global supply chain: Modeling the enablers
10.1108/17465660810920609

Duclos, L.K., Vokurka, R.J., Lummus, R.R.
A conceptual model of supply chain flexibility
2-s2.0-0041361831 10.1108/02635570310480015

Pleumiprom, Y., Amornsawadwatana, S.
Performance development method for the aviation supply chain
Queens Town, New Zealand

Document Type: Article
Source: Scopus