Interaction of tamarind kernel powder, gum Arabic and maltodextrin in aqueous solution and microencapsulated systems

(Maisuthisakul, P. a, Harnsilawat, T. b)
DOI: 10.2174/157340130904131122095434

Abstract
The combination of polysaccharides as wall materials affects the stability of microcapsules. One of several factors influencing the stability is related to interaction between polysaccharides. The interaction of tamarind kernel powder, gum arabic and maltodextrin was obtained by UV-Visible spectrum and apparent viscosity in solution and on the aggregation of the W/O/W emulsions from encapsulation efficiency, creaming index, droplet size, Z-Potential, viscosity and microstructure analysis. The experimental results indicated that there are interactions between each polysaccharide. In the solution system, peak occurred at 210 nm for a solution mixture from 0.1% gum arabic, 10.00% maltodextrin and 0.02% tamarind kernel powder. Moreover, the synergistic viscosity increase was also observed. Interestingly, a combination of three polysaccharides in W/O/W emulsion exhibited the lowest creaming rate, the largest droplet, one peak of size distribution, and gave high encapsulation efficiency and the highest viscosity value compared to single and binary combination of each polysaccharide treatment. The results suggest that the interaction between tamarind kernel powder, gum arabic and maltodextrin is responsible for the stability enhancement of microencapsulated system. © 2013 Bentham Science Publishers.

Author Keywords
Encapsulation; Gum arabic; Interaction; Maltodextrin; Tamarind kernel powder

References

- Marangoni, A., Alli, I., Kermasha, S.

- Rao, P. S., Srivastava, H. C.
 (1973) *Tamarind In Industrial Gums*, pp. 369-411.

- Glicksman, M.
 In Glicksman M Ed., *Food Hydrocolloids VIII.*, CRC Press Inc.: Florida

- Gidley, M. J., Lilford, P. J., Rowlands, D. W.

- Osman, M. E., Williams, P. A., Menzies, A. R.

- Phillips, G. O., Williams, P. A.

- Dokić, P., Jakovljević, J., Dokić-Baucal, L.

- Wang, Y. J., Wang, L.
Structures and properties of commercial maltodextrins from corn, potato and rice starches

- Chronakis, I.S.
 On the molecular characteristics, compositional property and structural functional mechanisms of maltodextrins: A review

- Dickinson, E.
 Hydrocolloids at interfaces and the influence on the properties of dispersed systems

- Tolstoguzov, V.B.
 Protein-polysaccharide interactions
 In: Damodaran S, Paraf A, Eds., Marcel Dekker, New York

- Dickinson, E.
 Interfacial structure and stability of food emulsions as affected by protein-polysaccharide interactions

- Guenet, J.
 (1992) Thermore Versible Gelation of Polymers and Biopolymers,
 Academic Press, London

- Fischer, A., Houzelle, M.C., Hubert, P.
 Detection of intramolecular associations in hydrophobically modified pectin derivatives using fluorescent probes

- Hirrien, M., Chevillard, C., Desbrieres, J.
 Thermogelation of methylcelluloses: New evidence for understanding the gelation mechanism

- Jeon, K.J., Kaneko, K.K.
 Studies on ionic interactions between a glycosaminoglycan chondroitin-6-sulfate and lysine-containing polypeptides by NMR spectroscopy

- Guilherme, M.R., Silva, R., Girotto, E.M.
 Hydrogels based on PAAm network with PNIPAAm included: Hydrophilichydrophobic transition measured by the partition of Orange II and Methylene Blue in water

- Ozdal, T., Capanoglu, E., Altay, F.
 A review on Protein-phenolic interactions and associated change

- Troszy-Ska, A., Narolewska, O., Robredo, S.
 The effect of polysaccharides on the astringency induced by phenolic compounds

- Peroxide value (acetic acidchloroform method)
 AOCS Official Method Cd American Oil Chemists Society, Champaign, IL

- McDonald, R.E., Hultin, H.O.
 Some characteristics of the enzymatic lipid peroxidation systems in the microsomal...
fraction of flounder muscle

Kähkonen, M.P., Hopia, A.I., Vuorela, H.J.
Antioxidant activity of plant extracts containing phenolic compounds

Maisuthisakul, P., Gordon, M.H.
Effect of oil, surfactant and phenolic extract from mango seed kernel on the
physicochemical properties of W/O/W emulsions

Surh, J., Vladisavljevica, G.T., Mun, S.
Preparation and characterization of water/oil and water/oil/water emulsions containing
biopolymer-gelled water droplets

McClements, D.J.
Protein-stabilized emulsions

Petrovic, L.B., Sovilj, V.J., Katona, J.M.
Influence of polymer surfactant interactions on o/w emulsion properties and
microcapsule formation