Karnjanapoomi, N.a, Pramanapol, P.a, Lertratsamewong, V.a, Chacavarnkitkuln, T.a, Rattanajongjittakorn, V.a, Thavaravej, C.a, Wattanapornprom, W.b, Rodkaew, Y.c

\textbf{A nondominated adversarial search algorithm for a three-player chess game}

\textbf{DOI:} 10.1109/ICSEC.2013.6694778

a Faculty of Information and Communication Technology, Silpakorn University, Phetchaburi, Thailand

b Department of Information System Research and Development, Thai Ocean Industries Co. Ltd., Bangkok, Thailand

c Department of Computer Animation, School of Science and Technology, University of the Thai Chamber of Commerce, Bangkok, Thailand

\textbf{Abstract}

Three-player (3P) chess is a variation of chess game specially designed for three players. The winning condition that the first player will wins if the player captures any of the other's King, arises the playing strategies that a player can form a temporarily alliance with another player or a player can take advantage from the other's attacking to defeat either two of the opponents. This paper proposes a search algorithm called the nondominated adversarial search (NAS) for the three-player chess game which does not only maximize the own score but also minimize the opponents' scores. The experiment shows that the NAS algorithm can take advantage from the other's attacking to win the game. © 2013 IEEE.

\textbf{Author Keywords}

artificial intelligence; game; Minimax algorithm; Nondominated sorting; three player chess

\textbf{References}

- Osborne, M.J., Ariel, R. (1994) \textit{A Course in Game Theory}, Cambridge, MA: MIT, Print

- (1992) \textit{Lawrence Journal-World}, Chess for three, Oct 29,