Kamath, S.a, Sultornsanee, S.b, Zeid, A.a

\textbf{In-situ work piece surface roughness estimation in turning}

\textbf{DOI:} 10.1109/CoASE.2014.6899346

a Mechanical and Industrial Engineering Department, Northeastern University, Boston, MA, United States

b Dept. of Logistics Management, School of Business, University of Thai Chamber of Commerce, Bangkok, Thailand

\textbf{Abstract}

This paper describes a method for in-process estimation of surface roughness of the workpiece in a turning process from acoustic emission signals generated by the sliding friction between a graphite probe and the workpiece. Acoustic emission signals are transformed into recurrence plots and a set of recurrence statistics are computed using the recurrence quantification analysis. The surface roughness parameters are estimated using an artificial neural network, taking the recurrence statistics of the acoustic emission signals as inputs. This method is verified by conducting an extensive set of experiments on AISI 1054 steel workpiece and K420 grade uncoated carbon inserts. We consider three surface roughness parameters for estimation, namely arithmetic mean, maximum peak-to-valley roughness, and mean roughness depth. The estimation accuracy of the proposed method is in the range of 90.13% to 91.26%. © 2014 IEEE.

\textbf{References}

- Susic, E., Grabec, I.
 \textit{Application of a neural network to the estimation of Surface Roughness from AE signals generated by friction process}

- Diniz, A.E., Liu, J.J., Dornfeld, D.A.
 \textit{Correlating tool life wear and surface roughness by monitoring acoustic emission in finish turning}

- Jang, D.Y., Choi, Y.G., Kim, H.G., Hsiao, A.
 \textit{Study of the correlation between surface roughness and cutting vibration to develop an on-line roughness measuring technique in hard turning}

- Salgado, D.R., Alonso, F.J., Cambero, I., Marcelo, A.
 \textit{Inprocess surface roughness prediction system using cutting vibrations in turning}

- Sharma, V.S., Dhlman, S., Sehgal, R., Sharma, S.K.
 \textit{Estimation of cutting forces and surface roughness for hard turning using neural networks}

- Agustina Rubio B, E.M., Sebastian, M.A.
 \textit{Surface roughness model based on force sensors for the prediction of tool wear}

- Heraldo, A., Kunrath, A.N.
 \textit{Study of the relationship between tool wear and surface finish in turning with carbide tool}
 \textit{Advanced Material Research}, 902, pp. 95-100.

- Poincaré, H.
 \textit{Sur la probleme des trois corps et les équations de la dynamique}
 (1890) \textit{Acta Mathematica}, 13, pp. 1-271.

- Eckmann, J.P., Kamphorst, S.O., Ruelle, D.
 Recurrence plots of dynamical systems

 Analysis of sensor signals shows turning on a lathe exhibits lowdimensional chaos

- Marinescu, I., Axinte, D.A.
 A critical analysis of effectiveness of acoustic emission signals to detect tool and workpiece malfunctions in milling operations

- Bukkapatnam, S.T.S., Changqing, C.
 Forecasting the evolution of nonlinear and nonstationary systems using recurrencebased local Gaussian process models

- Katok, A., Hasselblatt, B.

- Broomhead, D.S., King, G.P.
 Extracting qualitative dynamics from experimental data

- Casdagli, M.C.
 Recurrence plots revisited

- Marwan, N., Kurths, J., Saparin, P.
 Generalized recurrence plot analysis for spatial data

- Marwan, N., Romano, M.C., Thiel, M., Kurths, J.
 Recurrence plots for the analysis of complex systems

- Kennel, M.B., Brown, R., Abarbanel, H.D.I.
 Determining embedding dimension for phase-space reconstruction using a geometrical construction

- Fraser, A.M., Swinney, H.
 Independent coordinates for strange attractors from mutual information

- Mindlin, G.M., Gilmore, R.
 Topological analysis and synthesis of chaotic time series

- Zbilut, J.P., Zaldivar-Comenges, J.-M., Strozzi, F.
 Recurrence quantification based Liapunov exponents for monitoring divergence in experimental data

- Thiel, M., Romano, M.C., Kurths, J., Meucci, R., Allaria, E., Arecchi, F.T.
 Influence of observational noise on the recurrence quantification analysis
Zbilut, J.P., Koebbe, M., Loeb, H., Mayer-Kress, G.
Use of recurrence plots in the analysis of heart beat intervals

Marwan, N., Thiel, M., Nowaczyk, N.R.
Cross recurrence plot based synchronization of time series

Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J.
Recurrence plot based measures of complexity and their application to heart rate variability data

Document Type: Conference Paper
Source: Scopus