Oral, M.\textsuperscript{a}, Oukil, A.\textsuperscript{b}, Malouin, J.-L.\textsuperscript{c}, Kettani, O.\textsuperscript{d}


DOI: 10.1016/j.seps.2013.08.003

\textsuperscript{a} Graduate School of Business, Özyeğin University, 34794 Istanbul, Turkey
\textsuperscript{b} College of Economics and Political Science, Sultan Qaboos University, Muscat, Oman
\textsuperscript{c} University of the Thai Chamber of Commerce, Bangkok, Thailand
\textsuperscript{d} Faculté des sciences de l'administration, Université Laval, Québec City, Canada

Abstract

Data envelopment analysis (DEA) is in fact more than just being an instrument for measuring the relative efficiencies of a group of decision making units (DMU). DEA models are also means of expressing appreciative democratic voices of DMUs. This paper proposes a methodology for allocating premium points to a group of professors using three models sequentially: (1) a DEA model for appreciative academic self-evaluation, (2) a DEA model for appreciative academic cross-evaluation, and (3) a Non-DEA model for academic rating of professors for the purpose of premium allocations. The premium results, called DEA results, are then compared with the premium points "nurtured" by the Dean, called N bonus points. After comparing DEA results and N bonus points, the Dean reassessed his initial bonus points and provided new ones - called DEA-N decisions. The experience indicates that judgmental decisions (Dean's evaluations) can be enhanced by making use of formal models (DEA and Non-DEA models). Moreover, the appreciative and democratic voices of professors are virtually embedded in the DEA models. © 2013 Elsevier Ltd.

Author Keywords

Academic performance; Appreciative democratic voice; DEA; Faculty evaluation; Judgmental decision; Self and cross-efficiency

References

• Charnes, A., Cooper, W.W., Rhodes, E.


• Contreras, I.


• Cooperrider, D.L., Whitney, D., Stavros, J.M.


• Cooperrider, D.L.


  from sustainable development to sustainable value (Advances in appreciative inquiry, Emerald Group Publishing Limited);

• Cooper, W.W., Seiford, L.M., Tone, H.


• De Witte, K., Rogge, N., Cherchy, L., Puyenbroeck, V.


• Doyle, J.R., Green, R.H.
Efficiency and cross efficiency in DEA: derivations, meanings, and uses

- Doyle, J.R., Green, R.H., Cook, W.D.
  Upper and lower bound evaluations of multi-attribute objects: comparison models using linear programming

- Doyle, J.R., Green, R.H.
  Cross-evaluation in DEA

- Feng, Y., And, S., Xia, Q., Tang, C.
  Ranking DMUs by using interval DEA cross-efficiency matrix with acceptability analysis

- Green, R.H., Doyle, J.R., Cook, W.D.
  Preference voting and project ranking using DEA and cross-evaluation

- Joro, T., Viitala, E.-J.
  Weight-restricted DEA in action: from expert opinion to mathematical models

- Kacmar, K.M., Collins, B.J., Harris, K.J., Judge, T.A.
  Core self-evaluation and job performance: the role of the perceived work environment

- Kettani, O., Aouni, B., Martel, J.M.
  The double role of the weight factor in the goal programming model, 2004

- Liang, L., Wu, J., Cook, W.D., Zhu, J.
  Alternative secondary goals in DEA cross-efficiency evaluation

- Liang, L., Cook, W.D., Zhu, J.
  The DEA game cross-efficiency model and its Nash equilibrium

- Oral, M.
  Action research contextualizes DEA in a multi-organizational decision-making process

- Oral, M.
  E-DEA: enhanced data envelopment analysis

- Oral, M., Kettani, O., Lang, P.
  A methodology for collective evaluation and selection of industrial R&D projects

- Oral, M., Kettani, O., Yolalan, R.
  An empirical study on analyzing the productivity of bank branches

- Oral, M., Kettani, O., Çinar, Ü.
  Project evaluation and selection in a network of collaboration: a consensual disaggregation multi-criterion approach

Data envelopment analysis: critique and extensions

- Sohn, S.Y., Kim, Y.
  DEA based multi-period evaluation system for research in academia

- Sun, M.
  A multiple objective programming approach for determining faculty salary equity adjustments

- Wang, Y.-M., Chin, K.-S.
  The use of OWA operator weights for cross-efficiency aggregation

- Wang, Y.M., Chin, K.S., Yang, J.B.
  Measuring the performance of decision-making units using geometric average efficiency

- Wu, J., Liang, L., Yang, F., Yan, H.
  Bargaining game model in the evaluation of decision making units

- Wu, J., Liang, L., Ying-chun, Z.
  Determination of weights of ultimate cross efficiency based on the solution of nucleolus in cooperative game

Document Type: Article
Source: Scopus