Split Genetic Algorithm for the Container Stowage Problem

Associate Professor Dr. Chartchai Leenawong
Department of Mathematics
Faculty of Science
King Mongkut's Institute of Technology Ladkrabang
E-mail: cleenawong@gmail.com

Mr. Worrasisit Chiraratwaro
Research Assistant at the Department of Mathematics
Faculty of Science
King Mongkut’s Institute of Technology Ladkrabang
E-mail: neosun249@hotmail.com
Abstract

In this research, the container stowage problem for multiple destinations is investigated. Due to the competitiveness in transportation industries, business owners/managers seek to minimize operating costs and expenses in order to gain competitive advantages in the market. A modified genetic algorithm for solving this particular problem is proposed and subsequently called the Split Genetic Algorithm (SGA). It is an alternative way for sorting the containers by destination to keep the ship balanced without re-handling after unloading containers at each destination. The authors have developed a computer program custom made for the problem using the proposed algorithm.

Keywords: Container Stowage Problem, Shipping, Genetic Algorithm
1. บทนำ

การเดินโดยอย่างต่อเนื่องทางด้านการขนส่งระหว่างประเทศในปัจจุบัน ทำให้เกิดการแข่งขันทางด้านราคาและการบริการด้านที่เร่งรัดขึ้น ซึ่งรูปแบบการขนส่งระหว่างประเทศโดยทั่วไปมีรูปแบบ 3 แบบ ได้แก่ การขนส่งทางน้ำ ทางบก และทางอากาศ โดยการขนส่งทางน้ำเป็นรูปแบบการขนส่งส่งบรรทุกระหว่างประเทศ เนื่องจากมีต้นทุนการขนส่งสูงกว่าการขนส่งแบบอื่น และสามารถขนส่งเป็นปริมาณที่มากในแต่ละครั้ง

ปัญหาของการจัดเรียงลำดับคู่คองแทนเนอร์ที่ไม่ใช้ในตำแหน่งที่เหมาะสม ต่อการลำเลียงคู่คองแทนเนอร์ชิ้น-ชิ้นเรียนในแต่ละจุดหมายปลายทาง ซึ่งปัญหายังคงในการจัดเรียงคือ เมื่อต้องการลำเลียงคู่คองแทนเนอร์จากเรือสินค้า แต่ไม่ได้ถูกเทียบที่ต้องการลำเลียงลงอยู่ จะต้องทำการเคลื่อนย้ายคู่คองแทนเนอร์ที่ซ้อนวาง การลำเลียงออกเสียก่อน และผลักจากลำเลียงคู่คองแทนเนอร์ในแต่ละจุดหมายปลายทางแล้ว อาจจะต้องการจัดเรียงคู่คองแทนเนอร์ภายในเรือใหม่อีกร่วหนึ่ง เพื่อความมีประสิทธิภาพของเรือ ซึ่งกิจกรรมที่เกิดขึ้นนี้ก่อเป็นจุดเริ่มต้นทางด้านทุนของเรือขนส่งทางเรือ และเพื่อลดต้นทุนที่ไม่จำเป็นลงให้มากที่สุด จึงจะต้องลดจำนวนการเคลื่อนย้ายคู่คองแทนเนอร์ที่ไม่จำเป็นให้เหลือน้อยที่สุด ซึ่งปัญหาการจัดเรียงคู่คองแทนเนอร์ภายในเรือจะมีความซับซ้อนมากยิ่งขึ้น เมื่อสินค้าจะต้องกระจายเทียบเรือเจ้าหน้าที่ของในที่ต่างๆ

การจัดเรียงคู่คองแทนเนอร์ที่พานผ่านมันส่วนมาก จะจัดเรียงคู่คองแทนเนอร์ให้อยู่ในลักษณะกลุ่มคู่คองแทนเนอร์ที่อยู่จุดหมายเดียวกันวางไว้กลับกัน และมีการวางที่บนของคู่คองแทนเนอร์ที่ไปยังจุดหมายต่างกัน ซึ่งทำให้ต้องเคลื่อนย้ายรายนี้เสียก่อน งานจัดเรียงมีได้สำหรับวิธีการจัดเรียงคู่คองแทนเนอร์ที่แตกต่างออกไป โดยมีการจัดเรียงคู่คองแทนเนอร์ตามจุดหมายปลายทาง และค่านั้นถึงความมีประสิทธิภาพของเรือเส้นด้านในแต่ละจุดหมาย เพื่อที่หลังจากทำการส่งคู่คองแทนเนอร์ไม่ถึง เป็นการลดการเคลื่อนย้ายคู่คองแทนเนอร์ที่ไม่จำเป็นลงให้มากที่สุด

2. งานวิจัยที่เกี่ยวข้อง

Dubrovsky, Levitin, and Penn (2002) ได้นำเสนอแนวคิดการจัดเรียงคู่คองแทนเนอร์ที่เสียสิ่งใด โดยใช้วิธีคอมพิวเตอร์เพื่อหาแนวปฏิบัติการของผู้จัดการ ซึ่งทางผู้จัดการได้พยายามให้มีการจัดเรียงคู่คองแทนเนอร์ให้เพียงพอต่อจุดประสงค์ของปัญหาดังนั้น ในกรณีที่มีความอยู่น้อยเพียงพอต่อยอดจำของปัญหาดังนั้น เช่น ปัญหาความมีประสิทธิภาพของเรือ หรือปัญหาหน้าที่ของเรือ นอกจากนั้น ผู้วิจัยยังซิ่งระบบการทำงานของฮีริสติกส์มีความเหมาะสมสำหรับปัญหามากที่ไม่ใหญ่มากก็อีกด้วย

Ambrosino, Sciomachen, and Tantani (2004) ได้นำเสนอการจัดเรียงคู่คองแทนเนอร์ในเรือสินค้า โดยใช้วิธีการจัดเรียงคู่คองแทนเนอร์ และให้ทราบว่าการจัดเรียงคู่คองแทนเนอร์และที่ไปทางฮีริสติกส์ (Heuristics) ซึ่งเป็นวิธีการคิดที่เหนือกว่าการจัดเรียงคู่คองแทนเนอร์

ซึ่งเป็นการจัดเรียงคู่คองแทนเนอร์ที่ต้องการได้รับความมีประสิทธิภาพของเรือ และในตอนท้ายของการเรียนได้ทำการบริวิทยา
ความเร็วและการทำงาน CPU ของแบบจำลองที่ได้ในระหว่างการทดลองบัญชาการทดลองที่แตกต่างกันนี้ที่จะจัดเรียงตามลำดับเปรียบเทียบเครื่องมือเดิมที่มีความสามารถในการจัดเรียงอย่างยิ่งใหญ่.

ข้อสรุป

Wei (2009) ได้นำเสนอขั้นตอนวิธีแบบใหม่ที่ยิ่งใหญ่จากการทดลองความเหมาะสมที่สุด (Best Fit Decreasing-BFD) สามารถปรับปรุงใหม่โดยใช้วิธีวิเคราะห์การทดลองความเหมาะสมที่ต้องการปรับปรุง (Revised Best Fit Decreasing-RBFD) ซึ่งขั้นตอนวิธีนี้เหมาะสำหรับการจัดเรียงคู่ค่อนตอนที่อยู่ในขั้นตอนที่ที่มีการเปลี่ยนแปลงการทำงานขั้นบันทึกละยุ่งได้และผู้จัดทำได้แบ่งวิเคราะห์ผลของขั้นตอนวิธีนี้ออกเป็น 3 ประเภท

1. การปรับเปลี่ยนค่าของความสูงจุดเปลี่ยนศูนย์เฉลี่ย (Meta-Centric Height)

 ความสูงจุดเปลี่ยนศูนย์เฉลี่ย คือ ค่าที่ใช้วิเคราะห์ความสามารถในการทรงตัวของเครื่องจักรแบบ KBFD และ RBFD ได้ผลโดยไม่ต้องมีขั้นตอนการปรับเปลี่ยนขั้นตอนการทำงานขั้นบันทึกละยุ่งได้และผู้จัดทำได้แบ่งวิเคราะห์ผลของขั้นตอนวิธีนี้ออกเป็น 3 ประเภท

2. การปรับเปลี่ยนค่าของความคานในทิศทางตามยาว (Longitudinal Stress)

 ความคานในทิศทางตามยาว คือ แรงที่ทำให้พื้นที่ในเนื้อองค์ประกอบของเครื่องจักรแบบ KBFD และ RBFD สามารถลดความคานในทิศทางตามยาวได้ดีกว่าขั้นตอนวิธี KBFD

3. การปรับเปลี่ยนจำนวนครั้งของการถือครอง (Re-Handle)

 ขั้นตอนวิธี RBFD สามารถลดจำนวนครั้งของการถือครองได้ดีกว่าขั้นตอนวิธี KBFD
3. วิธีดำเนินงานวิจัย

ในงานวิจัยนี้ จะนำเสนอแนวคิดในการปรับปรุงวิธีการจัดเรียงตู้คอนเทนเนอร์ในเรือสินค้าโดยใช้จุดหมายปลายทางที่ 1 เป็นจุดหมายปลายทางที่ดีที่สุด และจุดหมายปลายทางที่ 2, 3, 4, ... เป็นจุดหมายปลายทางที่น้อยที่สุด โดยแบ่งการดำเนินการออกเป็นสองส่วนคือ ส่วนที่หนึ่งจะเป็นการอธิบายแนวคิดของการจัดเรียงตู้และแบบจำลองการจัดการจำนวนเติม ส่วนที่สองจะเป็นการอธิบายขั้นตอนวิธีทางพันธุกรรมแบบแบ่ง (Split Genetic Algorithm) ซึ่งเป็นการปรับปรุงขั้นตอนวิธีทางพันธุกรรม (Marek, 1998) เทิมเพื่อให้ผลคล้องกับปัญหา

3.1 วิธีการจัดเรียงตู้และแบบจำลองการกำหนดการจำนวนเติม

จากปัญหาต่าง ๆ ของการจัดเรียงตู้คอนเทนเนอร์ ลองเรียนการนั้น จึงมีความคิดที่จะสร้างแบบจำลองการขึ้นมาเพื่อทดสอบวิธีการจัดเรียงตู้คอนเทนเนอร์ในอัตราวิเคราะห์ของข้อมูล ซึ่งเป็นวิธีการจัดเรียงที่แตกต่างออกไปจากที่เคยมีอยู่ในปัจจุบัน โดยการรับข้อมูลของตู้คอนเทนเนอร์ทั้งหมด และทำการแบ่งข้อมูลตามจุดหมายปลายทาง หลังจากนั้นทำการคำนวณโดยขั้นตอนวิธีทางพันธุกรรมแบบแบ่ง ตามแต่ละจุดหมายปลายทาง ซึ่งเป็นการแยกค่าน้ำหนักอย่างสมบูรณ์ การคำนวณโดยแต่ละจุดหมายปลายทางนั้น จะถูกกำหนดขอบเขตไว้ด้วยกำหนดการเชิงเส้นจำนวนเติมซึ่งข้อมูลข้อถูกดังกล่าวถูกใช้ในการตรวจสอบการจัดเรียงตู้คอนเทนเนอร์ในเรือสินค้าทั้งสิ้นอยู่ด้วย และผลจากการเชิงเส้นการคำนวณแล้ว โปรแกรมที่ทางวิจัยได้ทำการพัฒนาขึ้นมาจะแสดงผลการคำนวณจำนวนเรือตู้คอนเทนเนอร์บนเรือสินค้า

แบบจำลองกำหนดการจำนวนเติม (Integer Linear Programming)

แบบจำลองกำหนดการจำนวนเติมที่สร้างขึ้นมาเพื่อแก้ปัญหาการจัดเรียงตู้คอนเทนเนอร์ในเรือสินค้า โดยเป้าหมายของผลผลิตคือ ให้มีผลรวมของผลต่างของน้ำหนักรวมของตู้คอนเทนเนอร์ทางข้าง-ขวาของเรือ และผลต่างของน้ำหนักรวมของตู้คอนเทนเนอร์ทางด้านหน้า-หลังของเรือน้อยที่สุด โดยมีเงื่อนไขที่กำหนดไว้เพื่อให้คำนวณอยู่ในขอบเขตที่ต้องการเช่น น้ำหนักรวมของตู้คอนเทนเนอร์ทั้งหมดต้องไม่เกินน้ำหนักสุดที่เรือสามารถรับได้ น้ำหนักรวมของตู้คอนเทนเนอร์ทางข้าง-ขวาหรือด้านหน้า-หลังต้องไม่เกินขอบเขตที่ยอมรับได้

ฟังก์ชันวัตถุประสงค์ คือ

\[
\begin{align*}
\text{Min} & \quad W_{IR} + W_{FR} \\
\text{ขอจ้างกับคือ} & \quad \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{q} x_{ijk} w_{ik} \leq Q \\
\text{กำหนดคือ} & \quad \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{q} x_{ijk} \leq n \\
\text{กำหนดคือ} & \quad W_{IR} \leq Q_{IR} \\
\text{กำหนดคือ} & \quad W_{FR} \leq Q_{FR} \\
\text{กำหนดคือ} & \quad W_{IR} = \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{q} x_{ijk} w_{ik} - \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{q} x_{ijk} w_{ik} \\
\text{กำหนดคือ} & \quad W_{FR} = \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{q} x_{ijk} w_{ik} - \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{q} x_{ijk} w_{ik}
\end{align*}
\]

tัวแปรการตัดสินใจ

\[
x_{ijk} \text{ คือ [0,1]} \quad x_{ijk} = 1 \text{ เมื่อมีตู้คอนเทนเนอร์}
\]\n
วางอยู่ในตำแหน่ง \(ijk\)

\[
x_{ijk} = 0 \text{ เมื่อไม่มีตู้คอนเทนเนอร์}
\]\n
วางอยู่ในตำแหน่ง \(ijk\)
ตัวแปรเสริม

\(n \) คือ จำนวนสูงสุดของตู้คอนแทเนอร์ที่สามารถจัดวางบนเรือได้ เมื่อ \(n \in \mathbb{N} \)

\(h \) คือ จำนวนตู้คอนแทเนอร์ที่สามารถวางได้ตามความสูงของเรือ เมื่อ \(h \in \mathbb{N} \)

\(l \) คือ จำนวนตู้คอนแทเนอร์ที่สามารถวางได้ตามความยาวของเรือ เมื่อ \(l \in \mathbb{N} \)

\(w \) คือ จำนวนตู้คอนแทเนอร์ที่สามารถวางได้ตามความกว้างของเรือ เมื่อ \(w \in \mathbb{N} \)

\(i \) คือ ตำแหน่งบนเรือในตำแหน่งความสูงของเรือ เมื่อ \(i = 1, 2, \ldots, h \)

\(j \) คือ ตำแหน่งบนเรือในตำแหน่งความยาวของเรือ เมื่อ \(j = 1, 2, \ldots, l \)

\(k \) คือ ตำแหน่งบนเรือในตำแหน่งความกว้างของเรือ เมื่อ \(k = 1, 2, \ldots, w \)

\(w_{ijk} \) คือ น้ำหนักตู้คอนแทเนอร์ ณ ตำแหน่ง \(ijk \) โดยที่ \(w_{ijk} \in I^n \)

ข้อมูล

\(W_{LR} \) คือ ผลต่างของน้ำหนักรวมของตู้คอนแทเนอร์ทางชัย-ชาระของเรือ

\(W_{FB} \) คือ ผลต่างของน้ำหนักรวมของตู้คอนแทเนอร์ทางด้านหน้า-หลังของเรือ

\(Q \) คือ น้ำหนักสูงสุดที่สามารถวางตู้คอนแทเนอร์ลงเรือได้

\(Q_{LR} \) คือ ผลต่างของน้ำหนักรวมของตู้คอนแทเนอร์ทางชัย-ชาระของเรือที่สามารถรับได้

\(Q_{FB} \) คือ ผลต่างของน้ำหนักรวมของตู้คอนแทเนอร์ทางด้านหน้า-หลังของเรือที่สามารถรับได้

แบบจำลองข้างต้นสามารถสรุปความหมายได้ ดังนี้

- สมการที่ (3.1) คือ ฟังก์ชันวัดคุณสมบัติที่ต้องการผลรวมของผลต่างของน้ำหนักรวมของตู้คอนแทเนอร์ทางชัย-ชาระของเรือและผลต่างของน้ำหนักรวมของตู้คอนแทเนอร์ทางด้านหน้า-หลังของเรือน้อยที่สุด

- สมการที่ (3.2) คือ ผลรวมน้ำหนักของตู้คอนแทเนอร์ที่จุดบนเรือต้องไม่เกินน้ำหนักที่เรือสามารถรับได้

- สมการที่ (3.3) คือ ผลรวมของจำนวนตู้คอนแทเนอร์ต้องไม่เกินจำนวนทั้งหมดของตู้คอนแทเนอร์ที่เรือสามารถบรรทุกได้

- สมการที่ (3.4) คือ ผลต่างของน้ำหนักรวมของตู้คอนแทเนอร์ทางชัย-ชาระของเรือต้องไม่เกินค่าที่สามารถยอมรับได้

- สมการที่ (3.5) คือ ผลต่างของน้ำหนักรวมของตู้คอนแทเนอร์ทางด้านหน้า-หลังของเรือต้องไม่เกินค่าที่สามารถยอมรับได้

- สมการที่ (3.6) คือ ผลต่างของน้ำหนักรวมของตู้คอนแทเนอร์ทางชัย-ชาระของเรือ

- สมการที่ (3.7) คือ ผลต่างของน้ำหนักรวมของตู้คอนแทเนอร์ทางด้านหน้า-หลังของเรือ

3.2 ขั้นตอนวิธีทางพันธุกรรมแบบแบ่ง (Split Genetic Algorithm)

ขั้นตอนวิธีทางพันธุกรรมแบบแบ่งสำหรับปัญหาการจัดเรียงตู้คอนแทเนอร์ลงเรือแบบหลายจุดหมายปลายทาง ผู้วิจัยได้เพิ่มกระบวนการแบ่งโครโมโซม (Split Chromosomes) ขึ้นมาในส่วนการคำนวณ เนื่องจากไม่สามารถใช้กระบวนการทางพันธุกรรมแบบเดิมได้ เพราะจะ
ทำให้เกิดการซ้ำซ้อนของข้อมูลในระหว่างการคำนวณทั้งในช่วงการซ้ำซ้อนกับฟันธงและการกลับกันทุ้ม

ขั้นตอนการทำางของวิธีทางพื้นฐานกรรรมแบบ 1.

การกำหนดรูปแบบการคำนวณน้ำหนักของเรือสินค้า

<table>
<thead>
<tr>
<th>ลำดับ</th>
<th>น้ำหนักกระบอกตู้คอนเทนเนอร์ทางธุรกิจของเรือ</th>
<th>น้ำหนักกระบอกตู้คอนเทนเนอร์ทางธุรกิจของเรือ</th>
</tr>
</thead>
</table>

ภาพที่ 1 แสดงขอบเขตการคำนวณน้ำหนักกระบอกตู้คอนเทนเนอร์ ทางธุรกิจและธุรกิจของเรือ

ทำนองเป็นข้อมูลตามความยาวของเรือ (ล) ออกเป็น 3 ชั้นด้วยกัน คือ หน้า กลาง และหลังของเรือ จากภาพที่ 1 แสดงขอบเขตในรูปแสดงถึงพื้นที่สำหรับแนวตู้คอนเทนเนอร์ โดยที่ 1 ของสามารถ แนวตู้คอนเทนเนอร์ได้เพียง 1 ตู้เท่านั้น และจากกับ เป็นมุมมองที่มองจากทางด้านบนของเรือ ซึ่งแสดงถึงขอบเขตของการคำนวณน้ำหนักกระบอกตู้คอนเทนเนอร์สำหรับ 1 ชั้น

จากภาพที่ 1 จะเห็นได้ว่าในส่วนของพื้นที่ทรง

<table>
<thead>
<tr>
<th>ลำดับ</th>
<th>น้ำหนักกระบอกตู้คอนเทนเนอร์ แผ่นหน้าของเรือ</th>
<th>น้ำหนักกระบอกตู้คอนเทนเนอร์ แผ่นหลังของเรือ</th>
</tr>
</thead>
</table>

ภาพที่ 2 แสดงขอบเขตการคำนวณน้ำหนักกระบอกตู้คอนเทนเนอร์ ทางด้านหน้าและด้านหลังของเรือ

ทำนองเป็นข้อมูลตามความยาวของเรือ (ล) ออกเป็น 3 ชั้นด้วยกัน คือ หน้า กลาง และหลังของเรือ จากภาพที่ 2 แสดงขอบเขตในรูปแสดงถึงพื้นที่ สำหรับแนวตู้คอนเทนเนอร์ โดยที่ 1 ของสามารถ แนวตู้คอนเทนเนอร์ได้เพียง 1 ตู้เท่านั้น และจากกับ เป็นมุมมองที่มองจากทางด้านบนของเรือ ซึ่งแสดงถึงพื้นที่สำหรับการวางตู้คอนเทนเนอร์สำหรับ 1 ชั้น

จากภาพที่ 2 จะเห็นได้ว่าในส่วนของพื้นที่ทรง แสดงถึงขอบเขตของการคำนวณน้ำหนักกระบอกตู้คอนเทนเนอร์ ทางด้านหน้าและด้านหลังของเรือ จากการทำแบบเรือออกเป็น 3 ชั้นด้วยกัน สมการ ที่ใช้ในการคำนวณจำนวนแถวทางด้านหน้าและ
สาระวิชาการ มหาวิทยาลัยเทคโนโลยีราชมงคล พิทักษ์ ปีที่ 32 ฉบับที่ 4 เดือนตุลาคม - ธันวาคม 2555 59

ด้านหลังของเรื่อง คือ $x = [I/3]$ ซึ่งจะทำให้จำนวน
แยกกลางตัวหนึ่งและหลังของเรื่องมีจำนวนแวกน้อย
กว่าหรือเท่ากับ จำนวนแวกในส่วนตรงกลางเสมอ

ii. การกำหนดแบบโครโมโซม

กำหนดให้ โครโมโซมคือเซตของตัวแหน่ง
ทั้งหมดของตัวคุณหนอนแบบเรียงลำดับ และยืนยัน
หมายถึงตัวคุณหนอนแบบ จากภาพที่ 3 และรูปแบบ
ของโครโมโซม 1 โครโมโซม โดยในแต่ละยี จะบรรจุ
หมายข้อมูลของตัวคุณหนอนแบบได้เพียง 1 หมายข้อมูล
เท่านั้น และยังจะมีไว้สำรองไว้ได้ (ไม่มีการบรรจุ
หมายข้อมูลของตัวคุณหนอนแบบ) ซึ่งในแต่ละยีจะแสดงถึง
ตัวแทนบนเรียงลำดับ โดยความยาวของโครโมโซม
จะขึ้นอยู่กับพื้นที่ที่ส่วนประกอบตัวคุณหนอนแบบเรียง
ลำดับ โดยสมการที่ใช้กำหนดเป็น $w 	imes l 	imes h$ โดย h
จำนวนจาก $[n_p / (w 	imes l)]$ ขณะที่ n_p คือจำนวน
ตัวคุณหนอนแบบของจุดหมายปลายทางที่ p

- การเข้ารหัสโครโมโซม (Chromosome Encoding)
หลังจากผ่านข้อมูลของตัวคุณหนอนแบบแล้ว จะ
ทำการแบ่งข้อมูลตามจุดหมายปลายทาง เพื่อที่จะนำข้อมูลไปแสดงจุดหมายปลายทางกำหนด
โดยทำการสุ่มตัวคุณหนอนแบบหรือเรียงลำดับ โดยการทำ
สุ่มตัวคุณหนอนแบบหรือเรียงลำดับ ที่สุดจะถูกใช้
ในการสุ่มก่อนนำเข้าโครโมโซม โดยจะส่งข้อมูลโครโมโซมของแต่ละจุดหมายปลายทาง
จากการสุ่มข้างต้น 20 โครโมโซม

- ประชากรเริ่มต้น (Initial Population)
ทำการคัดเลือกโครโมโซมที่ดีที่สุด 2 ตัวจาก
20 ตัว คัดเลือกโดยใช้วิธีถ่วงน้ำหนัก $(2W_{LR}) + W_{FB}$
หลังจากได้โครโมโซมแรก 2 ตัวแล้วนำมานำไปเรียงเบี้ย
อีกครั้งหนึ่ง เลือกโครโมโซมที่มีค่า W_{LR} น้อยที่สุดมา
เป็นโครโมโซมเริ่มต้น แล้วทำการคัดเลือกโครโมโซมที่มีค่า W_{LR}
น้อยที่สุดมาเป็นโครโมโซมเริ่มต้น

- การแบ่งโครโมโซม (Chromosomes Splitting)
โดยปกติเมื่อได้โครโมโซมเริ่มต้น จาก
กระบวนการคัดเลือกประชากรเริ่มต้นแล้วจะนำ
โครโมโซมเริ่มต้น 2 โครโมโซม (ให้โครโมโซมที่
เป็นโครโมโซมพ่อ และให้โครโมโซมหลังเป็นโครโมโซ
แม่) ทำการข้ามสายพันธุ์กับโครโมซี่ช่วง
ที่จะทำการข้ามสายพันธุ์ และทำการแยกปิดยี
โครโมโซมกั้นระหว่างโครโมโซมพ่อและโครโมโซมแม่
โดยคัดเลือกโครโมโซมที่เหมือนกัน ยกเว้น ที่อยู่หน้าต่าง

ภาพที่ 3 ด้วยโครโมโซม

ภาพที่ 4 ด้วยโครโมโซมเริ่มต้น
การเข้าสายพันธุ์ของพ่อและแม่มีความสัมพันธ์กัน แต่
สำหรับปัญหาการจัดเรียงตัวอักษรไทยในเรือนร้าน
ที่พิจารณาเนื่องเนื่องจากมีอิทธิพลในโครงฟรั่นส์
แทนด้วยพื้นที่ของตัวอักษรโหนทอนเนเธอร์ ซึ่งทำให้
สายพันธุ์และอาการลายพื้นถ้วยปกติแล้ว จะทำให้
ภายในโครงฟรั่นส์มีอิทธิพลกัน ทางผู้ใช้งานได้ปรับปรุง
ชั้นตอบจากการกำหนดโครงฟรั่นส์พ่อและโครงฟรั่นส์
แม่ใหม่ดังนี้

![ภาพที่ 5 แสดงการแบ่งโครงฟรั่นส์เป็น 2 สำน คือ โครงฟรั่นส์พ่อและโครงฟรั่นส์แม่]

โดยนำโครงฟรั่นส์ที่ผ่านการคัดเลือก
มาทำการแบ่งออกเป็น 2 สำน จากภาพที่ 5 ให้ส่วน
ช่างหน้าเป็นโครงฟรั่นส์พ่อ (แรงบางบาง) และส่วนช่าง
หลังเป็นโครงฟรั่นส์แม่ (แรงมาก) โดยมีวิธีการแบ่ง
โครงฟรั่นส์ ดังนี้

ขั้นตอนยืนของโครงฟรั่นส์พ่อ = \[\frac{W_{LR}}{2} \]

ขั้นตอนยืนของโครงฟรั่นส์แม่ = \[\frac{W_{LR}}{2} \]

จากภาพที่ 5 โครงฟรั่นส์พ่อเป็นทั้งหมด 100 ยิน
เป็นเลขดั่งด้านโครงฟรั่นส์พ่อและโครงฟรั่นส์แม่ จะมี
ขั้นตอนยืนที่เท่ากันคือ 100/2 = 50 ยิน หน้าหลายความ
ว่า ยินต่างเหลื่องที่ 1-50 จะไปสังเกตโครงฟรั่นส์พ่อ
และยินต่างเหลื่องที่ 51-100 จะไปสังเกตโครงฟรั่นส์
แม่

- พิสัยงับค่าความเหมาะสม (Fitness Function)

ในการที่จะพิจารณาให้เหมาะสม ค่า เวิลด์ + เวิลด์
พิจารณาค่าความเหมาะสมของโครงฟรั่นส์ พะรับ
เป็นโครงฟรั่นส์เริ่มต้นสำหรับรุ่นเก่าของค่าความ
ในกรณีที่โครงฟรั่นส์มีค่าความเหมาะสมเท่ากันจะให้
ความสัมพันธุ์ของค่า เวิลด์ คือ โครงฟรั่นส์
ใหม่มีค่า เวิลด์ น้อยกว่าเราจะเลือกโครงฟรั่นส์นั้น
ให้เป็นโครงฟรั่นส์เริ่มต้นสำหรับรุ่นเก่าไป ถ้าค่า เวิลด์
มีค่าเท่ากันจะพิจารณาค่า เวิลด์ ที่สั้นลับเกิดไป

- การเข้าสายพันธุ์ (Crossover)

นำโครงฟรั่นส์พ่อและโครงฟรั่นส์แม่ที่ผ่านการ
แบ่งโครงฟรั่นส์แล้ว มาทำการสุมค่าแห่งส่งที่จะทำการ
เข้าสายพันธุ์ โดยการสุมค่าแห่งส่งโครงฟรั่นส์พ่อ
และโครงฟรั่นส์แม่จะได้มีอิทธิพลจากกัน เนื่องจาก
รูปแบบของโครงฟรั่นส์แสดงถึงการระบุค่าแห่งส่ง
ซึ่งจะจัดเรียงตัวคณิตแผนอ่องเรียงเส้นได้ ซึ่งมี
จำนวนยืนในแต่ละโครงฟรั่นส์เท่ากันจำนวนพื้นที่
สำหรับช่องคณิตแผนอ่อง นั่นคือ สำหรับโครงฟรั่นส์
ที่ 2 ที่ได้รับการแบ่งอาจจะมีค่าแห่งส่งและตัวคณิต
แผนอ่องที่เหมือนกันแต่คณิตซึ่งในกรณีที่
โครงฟรั่นส์มีจำนวนยืนที่ช่องเดียวกัน ซึ่งจะทำให้
ค่าของ เวิลด์ ไม่เปลี่ยนแปลง และจะทำให้ค่าของ
เวิลด์ ไม่เปลี่ยนแปลงเช่นกันสำหรับกรณีที่โครงฟรั่นส์
เริ่มต้นมีจำนวนยืนที่ช่องเดียวกัน (ค่าแห่งส่งและตัวคณิต
แผนอ่องที่เหมือนกัน) และทำการสุมจำนวน

วารสารวิจัย มหาวิทยาลัยเกษตรศาสตร์ ปีที่ 32 ฉบับที่ 4 เดือนตุลาคม - อันดามัน 2555
กรณีที่จะทำการเข้าสายพันธุ์ โดยกำหนดให้จำนวน
กรณีที่จะทำการเข้าสายพันธุ์นั้นอยู่ระหว่าง 1-10 ขัน
จากนั้นจึงทำการแลกเปลี่ยนอินเทอร์เวลระหว่างโครโมโซม
ผลและโครโมโซมแม่.

จากภาพที่ 6 ต่างแหน่งที่สูงได้จากโครโมโซม
ผลคือยินดีว่า 27 (1-27) และต่างแหน่งที่สูงได้จาก
โครโมโซมแม่คือยินดีที่ 28 (51-79) และจำนวนยิน

ได้จากการเข้าสายพันธุ์นั้นสูงขึ้นมาได้ คือ 6 ขัน
นั้นคือ กรณีของโครโมโซมพอที่จะทำการแลกเปลี่ยน
คือ ยกตัวแหน่งที่ 27-32 และยินของโครโมโซม
แม่ที่จะทำการแลกเปลี่ยนคือยินตัวแหน่งที่ 28-33
(79-84) หลังจากนั้นทำการแลกเปลี่ยนอินที่ระหว่าง
โครโมโซมพอและโครโมโซมแม่.

ภาพที่ 6 แสดงการเข้าสายพันธุ์

- การกลายพันธุ์ (Mutation)
หลังจากการสืบสันสกุลระบบการเข้าสายพันธุ์แล้ว
ให้ทำการสุ่มต่างแหน่งอินภายในโครโมโซมขึ้นมา 1
ต่างแหน่ง และทำการแลกเปลี่ยนอินระหว่างอินของ
โครโมโซมพอและโครโมโซมแม่ โดยต่างแหน่งยินที่
สามารถสุ่มได้นั้นจะอยู่ภายในขอบเขต [(w x l x
h)/2]

จากภาพที่ 7 ต่างแหน่งอินที่สูงได้ คือ ยิน
ต่างแหน่งที่ 24 โครโมโซมพอ (1-24) และโครโมโซม
แม่ (51-74)

ภาพที่ 7 แสดงการกลายพันธุ์

หลังจากการสืบสันสกุลระบบการคัดเลือก
โครโมโซมแล้วก็จะนำโครโมโซมที่ดีที่สุดมาเป็น
โครโมโซมเริ่มต้นสำหรับคำนวณผลสัมพันธ์ในรุ่นถัด
ไป โดยมีหลักเกณฑ์ในการหาผลเลยดังนี้

- ถ้าผลสัมพันธ์รุ่นถัดไปไม่เทียบเท่าหรือดีกว่ารุ่น
 กลุ่มนั้น ให้ทำการยุบคัดเลือน และนำผลสัมพันธ์ที่ดีที่สุด
 ในการคัดเลือกมาเป็นตัวตอบ

- หลังจากการสืบสันสกุลคำนวณผลสัมพันธ์
 ของจุดหมายปลายทางนั้นแล้ว จะจัดผลไปทำ
 กระบวนการคัดเลือกอีกครั้ง เพื่อทำการคัดหาผลสัมพันธ์
 ของจุดหมายปลายทางใกล้ไปจนครบจากนั้นจึงแสดง
 ผลผลิตทั้งหมด
4. โปรแกรมคอมพิวเตอร์เพื่อการจัดเรียงคูณแทนเครื่องในรอบทุกจุดปลายทาง

คำถามนี้ได้พัฒนาระบบโปรแกรมคอมพิวเตอร์ เพื่อแก้ปัญหาการจัดเรียงคูณแทนเครื่องในรอบสินค้า โดยใช้ขั้นตอนวิธีทางพนุกรมธรรม์แบบแบ่ง ซึ่งได้พัฒนาขึ้นโดยใช้ภาษา Java.

การคำนวณหาผลผลิตในแต่ละจุดปลายทาง
- จุดปลายทางที่ 2

![Calculator Destination](image)

ภาพที่ 8 แสดงขั้นตอนการคำนวณการจัดเรียงคูณแทนเครื่องสำหรับจุดปลายทางที่ 2

จากภาพที่ 8 สามารถอ่านการแสดงผลได้ดังนี้

- Select Parent = 19, Min WLR+WFB = 55 แสดงว่า คิวหนึ่งในเข้าชีนเลือก โดยเลือกคิวหนึ่งในที่มีค่าส่วนน้ำหนักน้อยที่สุดเป็นประชากรเริ่มต้นในที่นี้คือ คิวไตรมาสที่ 19

- Weight FB = 35, Weigh LR = 10 คือ ผลต่างของการน้ำหนักรวมของไตรมาสที่ 19 มีค่า $W_{FB} = 35$ ตัน และ $W_{LR} = 10$ ตัน

- 1 2 1 ... 187 คือ แสดงจำนวนรุ่นของไตรมาสที่ทำในการคำนวณ โดยในโปรแกรมทำกร คำนวณทั้งหมด 188 รุ่น

- BestSolution : Generations = 187.

Child : 47 คือ คิวหนึ่งในเข้าแสดงเป็นผลผลิตการจัดเรียงคูณแทนเครื่องของจุดปลายทางที่ 2 อยู่ที่รุ่น 187 และคำตอบอยู่ที่ตัวเลขที่ 47

- Weight FB = 0, Weigh LR = 0 คือ ผลต่างของน้ำหนักรวมของไตรมาสรุ่นที่ 187 ตัวเลขที่ 47 มีค่า $W_{FB} = 0$ ตัน และ $W_{LR} = 0$ ตัน
ภาพที่ 9 แสดงขั้นตอนการค้นหาจุดค้นพบเนื้อสร้างจุดหมายปลายทางที่ 1

- จุดหมายปลายทางที่ 1

จากภาพที่ 9 สามารถย่อการแสดงผลได้ดังนี้
- Select Parent = 9, Min WLR+WFB = 155 แสดงถึงโค้ดไม่ใช่สีที่ถูกเลือก โดยเลือกโค้ดไม่ใช่สีที่มีค่ารวมกันน้อยที่สุดตามเป็นประมวลเริ่มต้นในที่นี้คือ โค้ดไม่ใช่สีที่ 9
- Weight FB = 125, Weigh LR = 15 แสดงถึงผลต่างของหน้าที่รวมของโค้ดไม่ใช่สีที่ 9 มีค่า WFB = 125 ตันและ WLR = 15 ตัน
- 1 | 2 | ... | 130 คือ แสดงจำนวนรุ่นของโค้ดไม่ใช่สีที่ทำการค้นพบ โดยโปรแกรมทำการค้นพบทั้งหมด 131 รุ่น

- BestSolution : Generations = 130, Child = 36 คือ โค้ดไม่ใช่สีที่ถูกเลือกเป็นผลลัพธ์การจัดเรียงจุดค้นพบเนื้อสร้างจุดหมายปลายทางที่ 1 อยู่ที่รุ่น 130 และคำตอบอยู่ที่ตัวกลุ่มที่ 36

- Weight FB = 0, Weigh LR = 0 คือผลต่างของหน้าที่รวมโค้ดไม่ใช่สีที่ 130 ตัวกลุ่มที่ 36 มีค่า WFB = 0 ตันและ WLR = 0 ตัน

โดยผลลัพธ์การจัดเรียงจุดค้นพบเนื้อสร้างจุดหมายปลายทางที่ 2 คือ รุ่นของการค้นพบที่ 187 และตัวกลุ่มที่ 47 โดยสามารถแสดงผลการจัดเรียงได้ดังภาพที่ 10 และผลลัพธ์การจัดเรียงจุดค้นพบเนื้อสร้างจุดหมายปลายทางที่ 1 คือ รุ่นของการค้นพบที่ 130 และตัวกลุ่มที่ 36 โดยสามารถแสดงผลการจัดเรียงได้ดังภาพที่ 11
ภาพที่ 10 แสดงผลการจัดเรียงผู้ค้อนขณะย่อสำหรับจุดปลายปลายทางที่ 2

จากภาพที่ 10 สามารถอ่านการแสดงผลได้ดังนี้

- **Layer [1]** คือ ชั้นล่างที่สุด (ชั้นที่ 1) สำหรับวางผู้ค้อนขณะย่อ

- **Layer [2]** คือ ชั้นถัดขึ้นมา (ชั้นที่ 2) สำหรับวางผู้ค้อนขณะย่อ

- **Line** คือแสดงหมายเลขกับแถวตามความยาวของเรือ

- ตัวเลขแสดงถึงหมายเลขของผู้ค้อนขณะย่อ และตำแหน่งการจัดเรียงผู้ค้อนขณะย่อบนเรือสินล่าสำหรับจุดปลายปลายทางที่ 2
ภาพที่ 11 แสดงผลการจัดเรียงตู้คอนแทนเนอร์สำหรับจุดหมายปลายทางที่ 1

- จากภาพที่ 11 สามารถอ่านการแสดงผลได้ ดังนี้ Layer [1] คือ ชั้นล่างที่สุด (ชั้นที่ 1) สำหรับ วางตู้คอนแทนเนอร์

- Layer [2] คือ ชั้นบนชั้นมาก (ชั้นที่ 2) สำหรับ วางตู้คอนแทนเนอร์

- Line คือ แสดงหมายเลขก๊าซ背叛ตาม ความยาวของเรือ

- ตัวเลข แสดงถึงหมายเลขของตู้คอนแทนเนอร์ และตำแหน่งการจัดเรียงตู้คอนแทนเนอร์บนเรือสินค้า สำหรับจุดหมายปลายทางที่ 1

ส่วนแสดงการจัดเรียงตู้คอนแทนเนอร์ที่ติดที่สุด

หลังจากการคำนวณเสร็จสิ้นแล้วโปรแกรม จะเรียงข้อมูลผลลัพธ์ในรูปแบบ แผนผังการวาง ตู้คอนแทนเนอร์แบบเสมียน ดังต่อไปนี้
ตารางที่ 12 รูปแบบการจัดเรียงผู้ตอบแทนแบบรันเรียงสิ้นค่าที่ได้จากโปรแกรม
สรุปผล

งานวิจัยนี้ได้แนะนำการจัดเรียงตู้คอนเทนเนอร์ภายในเรือสินค้า โดยใช้ขั้นตอนวิธีพีจูรัมแบบแบ่ง บางๆ ขั้นตอนเพื่อให้สามารถพัฒนาความสามารถในการจัดเรียงตู้คอนเทนเนอร์ในแต่ละชั่ว (Layer) ซึ่งจะช่วยให้สะดวกต่อการลำเลียงสินค้า นอกจากนี้ ของการทดสอบด้วยโปรแกรมที่สร้างขึ้น พบว่า จำนวนรุ่น (Generations)ที่ใช้ในการคำนวณจะขึ้นอยู่กับจำนวนตู้คอนเทนเนอร์ในแต่ละจุดหมายปลายทาง กล่าวอีกนัยหนึ่ง ถ้าจำนวนตู้คอนเทนเนอร์มากขึ้น ก็ต้องใช้จำนวนรุ่นในการคำนวณเพิ่มขึ้นด้วย

บรรณานุกรม

-notch อินทร์พรหม. 2548. การแก้ปัญหาการลำเลียงสินค้าภายในอุตสาหกรรมการขนส่งและโลจิสติกส์ กรุงเทพนนทบุรี: ซีเอ็ตูย์เคช.

Assoc.Prof.Dr. Chartchai Leenawong received a B.Sc. in Mathematics from Chulalongkorn University, an M.Sc. in Computer Science from Asian Institute of Technology, an M.B.A. from the National Institute of Development Administration, and a Ph.D. in Operations Research from Case Western Reserve University, Ohio, USA. He is currently working at the Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang. His research interests include Supply Chain Logistics and Operations Research applications.

Mr. Worratis Chiraratwaro received a B.Sc. in Applied Mathematics from King Mongkut’s Institute of Technology. He is a Master graduate and research assistant in Applied Mathematics at the same university. His research interests include Industrial Mathematics, Logistics, and Optimization.